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Abstract  
 Present paper shows the results of numerical solution of laminar, unsteady lubricated cylindrical  
slide bearing. Laminar, unsteady oil flow is performed during periodic and unperiodic perturbations of 
bearing load or is caused by the changes of gap height in the time. Above perturbations occur during the 
starting and stopping of machine. The solutions apply to infinite length of lubricated Newtonian oil with 
dynamic viscosity depends on pressure. The disturbances related with unsteady velocity oils on the 
journal and on the sleeve. The results shown on diagrams of hydrodynamic pressure in dimensionless 
form in time intervals of displacement duration.    
 
1. Introduction 
 
  This article refers to the unsteady, laminar flows issue, in which modified Reynolds 
number Re*=Reψ is smaller or equal to 2.  This flows [4], [5] are also determined by Taylor 
number Ty=Re  which is smaller or equal to 41.1. Increasing of criterial numbers causes 
firstly conversion into unsteady laminar-turbulent flows and later conversion into turbulent 
flows [1]. Laminar, unsteady oil flow is performed during periodic and unperiodic 
perturbations of bearing load or is caused by the changes of gap height in the time. Above 
perturbations occur mostly during the starting and stopping of machine. Lubricated oil 
disturbance velocity the pin and on the bearing shell was also consider in the article. Reynolds 
equation system describing Newtonian oil flow in the gap of transversal slide bearing was 
discussed in the articles [3], [4]. Mentioned equations were used in this article. Velocity 
perturbations of oil-lubricated flow on the pin can be caused by torsion pin vibrations during 
the rotary movement of the shaft. Perturbations are proportional to torsion vibration 
amplitude, frequent constraint and to pin radius of the shaft. Oil velocity perturbations on the 
shell surface can be caused by rotary vibration of the shell together with bearing casing. This 
movement can be considering as kinematic constraint for whole bearing friction node. 
Isothermal bearing model can be approximate to bearing operation in friction node under 
steady-state thermal load conditions for example bearing in generating set on ship. In bearing 
calculation operating in pressure of the order of 10 MPa, dynamic viscosity change from 
pressure was taken into consideration.  

 
2. Modified Reynolds Equation   

The unsteady, laminar and isotherm flow Newtonian oil in journal bearing gap is 
described for modified Reynolds equation [1], [2] from newtonian oil with constant and 
variable dynamic viscosity depended for pressure. In considered model we assume small 
unsteady disturbances and in order to maintain the laminar flow, oil velocity Vi

* and pressure 
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p1
* are total of dependent quantities iV~ ; 1

~p  and independent quantities  from time [3], 
[5] according to equation (1). 
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 Unsteady components of dimensionless oil velocity and pressure we [4] in following form 
of infinite series:   
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      where: i=1,2,3 ;ω0 – angular velocity perturbations in unsteady flow;  
                  j= 1  - imaginary unit. 
 
 Reynolds equation describing total dimensionless pressure p1

* (sum steady and unsteady 
components) in oil journal bearing gap [1] by unsteady, laminar, isotherm Newtonian flow 
along with disturbances of peripheral velocity V10 on the journal and V1h on the sleeve and 
disturbances of velocity on journal length V30 on the journal and V3h on the sleeve has 
following form: 
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        where:    )t;z;(pp  ; tt0  ; 1z1- ;  hr0   ; 0 1111k11p11e

 
 
 Dynamic oil viscosity η is depended on pressure by Barrus formula [5] and has following 
form:                            

                                       1000
ppp ee a ,                                           (4)  

 
     where: ηo- the  dynamic  oil viscosity for atmospheric pressure  p= pa 0,  η – the dynamic   
    oil viscosity function, α – the pressure influence piesocoefficient of the oil viscosity,  
    η1 – dimensionless dynamic viscosity depending on pressure η1=exp(αp). 
  
 Components of oil velocity V  ,Vr ,Vz in cylindrical co-ordinates r,φ,z have presented as 
V1 , V2 ,V3 in dimensionless form:   
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       where: U – peripheral journal velocity U=ωR; ω – angular journal velocity; R – radius of 
the journal; ψ– dimensionless radial clearance  ( ); L1 – dimensionless bearing 
length:     
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      where: b – length of the journal; ε – radial clearance. 
  
 Putting following quantities: dimensionless values density   ρ1, hydrodynamic pressure 

 dynamic oil viscosity η1, time t1, longitudinal gap height h1, radial co-ordinate r1   p1 ,
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 Rule of putting dimensionless velocity and pressure quantities in unsteady and steady part 
of the flow stays similar. Following symbols with bottom zero index signify density, dynamic 
viscosity, pressure and time describe characteristic dimension values assigned to adequate 
quantities. Parameter K characterizes dimensionless oil dynamic viscosity change from 
pressure. Laminar, unsteady, unsymmetrical oil flow is characterized in equation (3) with two 
criterial numbers: Re Reynolds Number, Str  Strouhal Number: 
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 Dynamic viscosity of oil is depended on pressure and presented as sum from steady part 
(not dependent from time) and unsteady (dependent from time) in dimensionless form [1]:  
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 For circumference unsteady components of oil velocity (2) we assume on the movable 
journal by r1=0 and in the motionless sleeve by r1= surface:   1h
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        where:       V10- dimensionless function for velocity of perturbation in direction φ on the 
                                  journal and V1h  on the sleeve. 
 For longitudinal unsteady components of oil velocity we assume on the oscillating journal 
r1=0 and sleeve r1= surface the following boundary conditions: 1h
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   where: V30- dimensionless function for velocity of perturbation in direction z1 on the  
   journal and V3h on the sleeve. 
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  Sum for series in right side Reynolds equation (3) to result from conservation of the 
momentum solutions and has the following form:  

 

                    

    10     
34

1)cos(

 ,

 1,;0        t             0

1t0     
2

)sin(

1

2
2

100
1 2

100

1

1

1
100

1

100

1

ttt
k

ttk
B

tt

k
ttk

A

kk
k

kk
k

                    (12) 

 
3.  Hydrodynamic Pressure  
 
 Further analyze consider bearing with infinity length and it is assumed that disturbance 
velocity does not depend on cylindrical co-ordinate φ. After double integral in term of 
variable φ and after imposing edge condition equation (3) determine total dimensionless 
hydrodynamic pressure function in following form:  
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                             for      . )t;(pp  ; tt0     ; 0 111k1e
    
 Pressure p10 is located in the oil gap by steady flow and by constant oil dynamic viscosity 
independent from pressure (K=0):  
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 Dimensionless total pressure by disturb flow and by constant oil dynamic viscosity 
independent from pressure (K=0):  
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 Disturbance pressure in unsteady flow part can be presented with common formula for 
constant and variable dynamic viscosity 0K  :         
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 Dimensionless pressure in steady and unsteady flow part at the film beginning φ=0 and at 
the film end φ= φe assume values equal to atmospheric pressure. At the film end extra edge 
condition is being fulfilled (pressure derivative by the angular co-ordinate  resets). Formula 
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(13) was used in numerical way to determine co-ordinate φe describing oil the film end 
position. In numerical analyze of pressure distribution values in formula (13) extra expression 
consisting of criteria numbers is presented below:  
 

                                                 .                                                (17) 0011 ReRe tStrn
 
       where: Re* - modified Reynolds Number  Re* ψRe,  n=ω0/ω  multiplication factor 
determined frequency periodical perturbations and frequency of journal rotation ω.  
 
 In disturbances of peripheral velocity case caused by journal bearing torsion vibrations of 
main engine, n value is equal to number of cylinder c in two-stroke engine or in four-stroke 
engine to number of cylinders c/2. 
 
4. Numerical Results 
 
 In numerical calculation example oil with constant density was assume, what is equivalent 
to quantity ρ1. In presented calculation way an expression value is assumed  nρ1Re* = 12, 
what is approximately equivalent to force over first frequency torsion vibrations force of six 
cylinder engine shaft. This takes place by laminar unsteady flow. Time of reference to is a 
period of velocity disturbances dispersion. Dimensionless oil gap height for bearing 
dependent eccentricity λ is described as follows:  
 

                                                             cos1h1 .                                                       (18) 
 
 In numerical calculations influence of velocity disturbances on the journal and on the 
sleeve were analyze. Examples apply to bearing with constant dependent eccentricity =0.6. 
Pressure distribution by wrapping angle and pressure distribution in time function at selected 
point at the journal surface. Numerical calculation results are presented by following 
tangential velocity perturbations:  

1. velocity perturbations on the journal V10=0.05, 
2. velocity perturbations on the journal V10=0.05  and on the sleeve V1h=0.025, 
3. velocity perturbations on the journal V10=0.05  and on the sleeve V1h=0.05, 
4. velocity perturbations on the journal V10=0.05  and on the sleeve V1h= -0.05 .

 
 Unsteady pressure is changing due velocity perturbations time and it is in function of time 
and position on the journal. It is a periodic function with the following lasting period of 
velocity perturbation. Pressure perturbation course in point φ=145 on the journal surface in 
dimensionless time function in case of velocity perturbation on the journal and on the sleeve 
is presented on fig. 1A (perturbation 1 and 2) and fig. 1B (perturbations 3 and 4).  
 Above graphs are made for constant viscosity and for viscosity in dependence on pressure 
where K=0.1.When oil velocity perturbations on the journal are compatible to journal 
tangential velocity than perturbation pressure increase otherwise the pressure is decreasing. In 
this case decrease considerably bigger than increase and it last shorter than half of 
perturbation period.  
 In case of velocity perturbation on the sleeve it is opposite. There is a lack of graphs for 
this example. Periods of pressure increase and decrease are non-symmetrical in case of 
different perturbation velocity values (graph 2). When perturbations velocity values are equal 
and directions are the same or opposite then perturbation pressure is symmetrical in time 
(graph 3 and 4,fig.1). Pressure perturbation distribution by wrapping angle is changing in 
time, giving in different time periods maximal or minimal pressure. 
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Fig. 1. Pressure distributions 1

~p  in place =145  in the time t1 for constant oil viscosity  (K=0) and for oil 
viscosity in dependence on pressure  (K=0.1) by velocity perturbations: 1) V10=0.05; V1h=0;  2) 
V10=0.05; V1h=0.025; 3) V10=0.05; V1h=0.05; 4) V10=0.05;   V1h=-0.05  

 

 Maximal and minimal pressure distribution for in considered velocity perturbation 
examples are presented on fig. 2A and 2B. In order to compare influence of viscosity variable 
in dependence on pressure (graph b), pressure distribution for oil with constant viscosity  (K=0), 
which is independent from pressure, were plotted (graph a). When viscosity is in 
dependence of pressure is causes an increase of steady pressure and perturbation pressure on 
both maximal and minimal pressure sides. Steady pressure flow sum up with perturbation 
pressure and total distribution of maximal and minimal pressure by bearing wrapping angle is 
received. This is the border pressure distribution for given type of perturbation. 
At the fig. 3A and 3B maximal and in  minimal total pressure distribution are presented for 
considered examples of velocity perturbation marked as in fig. 1 and 2. Oil lubricated  bearing 
with oil viscosity in dependence on pressure (K=0.1),  with bigger pressure reserve respond to 
velocity perturbation despite higher pressure perturbation than in case when lubricated with 
oil with independent viscosity from pressure (K=0). This pressure reserve is result from 
stationary pressure increase by oil lubrication with oil viscosity variable in dependence on 
pressure. 
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Fig. 2. Unsteady part maximal and minimal pressure distributions 1

~p in direction  a) for constant oil viscosity  
(K=0), b) for oil viscosity in dependence on pressure (K=0.1) by velocity perturbations: 1) V10=0.05; 
V1h=0;  2) V10=0.05; V1h=0.025. 3) V10=0.05; V1h=0.05;4)  V10=0.05; V1h= - 0.05 

5. Conclusions 
 Presented Reynolds Equation solution for unsteady, laminar, Newtonian flow of lubricated 
oil to enable initial opinion to hydrodynamic pressure distribution as a basic slide bearing 
operating parameter. Unsteady velocity perturbation on the journal and sleeve effect on 
hydrodynamic pressure distribution in lubricated gap. Influence of both perturbations is 
quantitative different and always bigger when oil viscosity depend on pressure. Pressure 
variations in bearing have periodical character equal to periodical velocity perturbation time 
and this variations value and character depend on type of perturbation. Author is aware of 
simplifications that were assumed in presented model which apply to Newtonian oil and to 
isothermal bearing model. 
 Despite that presented calculation example apply to bearing with infinity length, obtained 
conclusions can be useful to pressure distribution and aerodynamic lift assessment by laminar, 
unsteady lubrication of cylindrical slide bearing with finite length.  
Presented results can be also useful as a comparison values in numerical modelling of 
laminar, unsteady, non-Newtonian fluids in lubricated, lubricated crosswise gap of cylindrical 
slide bearing.  
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Fig. 3. Total maximal and minimal pressure distributions p1
* in direction   a) for constant oil viscosity  (K=0) 

and  b) for oil viscosity in dependence on pressure (K=0.1) by  velocity perturbations: 1) V10=0.05; V1h=0  
2) V10=0.05; V1h=0.025. 3) V10=0.05; V1h=0.05; 4) V10=0.05; V1h=-0.05 
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